Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Ethnopharmacol ; 273: 113871, 2021 Jun 12.
Article in English | MEDLINE | ID: covidwho-1042531

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Reduning injection (RDNI) is a patented Traditional Chinese medicine that contains three Chinese herbal medicines, respectively are the dry aboveground part of Artemisia annua L., the flower of Lonicera japonica Thunb., and the fruit Gardenia jasminoides J.Ellis. RDNI has been recommended for treating Coronavirus Disease 2019 (COVID-19) in the "New Coronavirus Pneumonia Diagnosis and Treatment Plan". AIM OF THE STUDY: To elucidate and verify the underlying mechanisms of RDNI for the treatment of COVID-19. METHODS: This study firstly performed anti-SARS-CoV-2 experiments in Vero E6 cells. Then, network pharmacology combined with molecular docking was adopted to explore the potential mechanisms of RDNI in the treatment for COVID-19. After that, western blot and a cytokine chip were used to validate the predictive results. RESULTS: We concluded that half toxic concentration of drug CC50 (dilution ratio) = 1:1280, CC50 = 2.031 mg crude drugs/mL (0.047 mg solid content/mL) and half effective concentration of drug (EC50) (diluted multiples) = 1:25140.3, EC50 = 103.420 µg crude drugs/mL (2.405 µg solid content/mL). We found that RDNI can mainly regulate targets like carbonic anhydrases (CAs), matrix metallopeptidases (MMPs) and pathways like PI3K/AKT, MAPK, Forkhead box O s and T cell receptor signaling pathways to reduce lung damage. We verified that RDNI could effectively inhibit the overexpression of MAPKs, PKC and p65 nuclear factor-κB. The injection could also affect cytokine levels, reduce inflammation and display antipyretic activity. CONCLUSION: RDNI can regulate ACE2, Mpro and PLP in COVID-19. The underlying mechanisms of RDNI in the treatment for COVID-19 may be related to the modulation of the cytokine levels and inflammation and its antipyretic activity by regulating the expression of MAPKs, PKC and p65 nuclear factor NF-κB.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Cell Line, Transformed , Chlorocebus aethiops , Computational Biology , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Cytokines/metabolism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , Protein Array Analysis , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL